European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir*

COST Action TD1105

WGs Meeting, Belgrade, 13 - 14 October 2015

organized by VINCA Institute and co-organized by Public Health Institute of Belgrade

hosted by Faculty of Mechanical Engineering, University of Belgrade

Action Start date: 16/05/2012 - Action End date: 30/04/2016

Year 4: 1 July 2015 - 30 April 2016 (Ongoing Action)

COMPARATIVE STATISTICAL ANALYSIS OF MULTIVARIATE LINEAR REGRESSION MODELS FOR CALIBRATION OF LOW COST SENSORS FOR AIR POLLUTION MONITORING

Dušan Topalović, Miloš Davidović, Milena Jovašević-Stojanović Vinča Institute of Nuclear Sciences, University of Belgrade, Serbia dusan.topalovic@vin.bg.ac.rs

- 1) INTRODUCTION
- 2) DNET EB700 SYSTEM FOR AIR POLLUTION MONITORING
- 3) RESULTS
- 4) MULTIVARIATE LINEAR REGRESSION MODELS FOR CALIBRATION OF LOW-COST SENSORS FOR AIR-POLLUTION MONITORING
- 5) CONCLUSION

INTRODUCTION

- 50% of people live in cities
- The UN estimates-in 2050.
 70% of the worlds population will live in cities
- Accommodation of a growing trend-"smart city" and ICT sector
- Citizens expectations:
 - Better quality of life
 - Detailed information about the citys environmental conditions
- Cities occupy 3% of the worlds geography-80% of CO2 emission

INTRODUCTION

- Maintenance of environmental quality-"green cities "
- Attracting tourists, investors, business and to provide additional information about the environmental conditions
- Optimization of industrial production:
 - Remote monitoring of work processes
 - Monitoring hazardous gases
 - Personal exposure to pollutants
 - Eco-friendly solutions
- Trend of lowering tolerance to air pollution
- Improving of monitoring services and putting in place polices-not following the regulations impose adequate penalties

INTRODUCTION

- Monitoring of air pollutionnetworks of static measurement stations under the control of public authorities
- Fixed Stations:
 - ➢ Reliable
 - ➤ Large
 - Expensive, with large cash costs
 - Limited number of installations
- The concentration of pollutants is spatially and temporally dependent

New possibilities for air pollution monitoring

- Solid-state gas sensors have started to be used for measuring the pollutants in the atmosphere
- Electrochemical reactions when exposed to a specific gas
- Measuring the output voltage or resistance of the tin oxide layer
- They are typically used in the industry
- Advantages:
 - Small
 - Cheap
 - Provides higher spatial resolution
- Disadvantages:
 - Limited measurement accuracy
 - > Instability
 - Poor selectivity
 - > Sensitivity to weather conditions and other gases

DNET EB700 SYSTEM FOR AIR POLLUTION MONITORING

- The DNET system is designed in such a way to provide a complete end-to-end solution for the environmental monitoring
- Low cost sensors for meteorological parameters (T,rH,p) and gases have been produced by Alphasense (UK)
- Particulate matter monitor (less then PM2.5 and PM10) has been produced by DYLOS (USA)
- Testing system performances and calibration in the field performing by Vinča institute (Serbia) in cooperation with SEPA (Serbian Environmental Protection Agency)
- Activities of system validation and data presentation and analysing has been performed in cooperation of Institute Vinča, QUT and DunavNet

DNET EB700 SYSTEM FOR AIR POLLUTION MONITORING

- The DNET system is designed in such a way to provide a complete end-to-end solution for the environmental monitoring
- Low cost sensors for meteorological parameters (T,rH,p) and gases have been produced by Alphasense (UK)
- Particulate matter monitor (less then PM2.5 and PM10) has been produced by DYLOS (USA)
- Testing system performances and calibration in the field performing by Vinča institute (Serbia) in cooperation with SEPA (Serbian Environmental Protection Agency)
- Activities of system validation and data presentation and analysing has been performed in cooperation of Institute Vinča, QUT and DunavNet

Pilot outdoor measurements in the municipalities of New Belgrade

- Based on experience from studies that have used cheap sensors for air pollution monitoring, it was recommended that when low-cost sensors are used in real time measurements it is necessary to perform an evaluation of their characteristics through a calibration procedure
- Pods were deployed within the SEPA stations for access to reference measurements (calibration)
- 13 pods at the same location, close to each other
- Correlations between the same sensor from different platforms
- Correlation between the platforms and the reference monitor (important for calibration)
- Time synchronization of the sensors and reference signal by interpolation
- Filtering of the signal with the aim of noise reduction

RESULTS

PMS (NB)	1	2	3	4	5	6	7	8	9	10	11	12	13
1	1.000	0.993	0.996		0.991	0.963	0.963	0.991	0.989	0.993			0.995
2	0.993	1.000	0.992		0.985	0.954	0.954	0.983	0.989	0.996			0.989
3	0.996	0.992	1.000		0.994	0.955	0.957	0.985	0.987	0.995			0.993
4													
5	0.991	0.985	0.994		1.000	0.951	0.953	0.982	0.979	0.987			0.992
6	0.963	0.954	0.955		0.951	1.000	0.990	0.979	0.976	0.947			0.972
7	0.963	0.954	0.957		0.953	0.990	1.000	0.977	0.975	0.948			0.972
8	0.991	0.983	0.985		0.982	0.979	0.977	1.000	0.987	0.979			0.992
9	0.989	0.989	0.987		0.979	0.976	0.975	0.987	1.000	0.988			0.990
10	0.993	0.996	0.995		0.987	0.947	0.948	0.979	0.988	1.000			0.988
11													
12													
13	0.995	0.989	0.993		0.992	0.972	0.972	0.992	0.990	0.988			1.000
PML (NB)	1	2	3	4	5	6	7	8	9	10	11	12	13
PML(NB) 1	1 1.000	2 0.952	3 0.522	4	5 0.950	6 0.961	7 0.958	8 0.974	9 0.947	10 0.864	11	12	13 0.972
PML (NB) 1 2	1 1.000 0.952	2 0.952 1.000	3 0.522 0.520	4	5 0.950 0.972	6 0.961 0.941	7 0.958 0.953	8 0.974 0.962	9 0.947 0.985	10 0.864 0.962	11	12	13 0.972 0.982
PML (NB) 1 2 3	1 1.000 0.952 0.522	2 0.952 1.000 0.520	3 0.522 0.520 1.000	4	5 0.950 0.972 0.516	6 0.961 0.941 0.518	7 0.958 0.953 0.519	8 0.974 0.962 0.523	9 0.947 0.985 0.519	10 0.864 0.962 0.493	11	12	13 0.972 0.982 0.524
PML(NB) 1 2 3 4	1 1.000 0.952 0.522	2 0.952 1.000 0.520	3 0.522 0.520 1.000	4	5 0.950 0.972 0.516	6 0.961 0.941 0.518	7 0.958 0.953 0.519	8 0.974 0.962 0.523	9 0.947 0.985 0.519	10 0.864 0.962 0.493	11	12	13 0.972 0.982 0.524
PML (NB) 1 2 3 4 5	1 1.000 0.952 0.522 0.950	2 0.952 1.000 0.520 0.972	3 0.522 0.520 1.000 0.516	4	5 0.950 0.972 0.516 1.000	6 0.961 0.941 0.518 0.924	7 0.958 0.953 0.519 0.927	8 0.974 0.962 0.523 0.958	9 0.947 0.985 0.519 0.958	10 0.864 0.962 0.493 0.921	11	12	13 0.972 0.982 0.524 0.978
PML (NB) 1 2 3 4 5 6	1 1.000 0.952 0.522 0.950 0.950 0.961	2 0.952 1.000 0.520 0.972 0.941	3 0.522 0.520 1.000 0.516 0.518	4	5 0.950 0.972 0.516 1.000 0.924	6 0.961 0.941 0.518 0.924 1.000	7 0.958 0.953 0.519 0.927 0.985	8 0.974 0.962 0.523 0.958 0.982	9 0.947 0.985 0.519 0.958 0.954	10 0.864 0.962 0.493 0.921 0.891	11	12	13 0.972 0.982 0.524 0.978 0.963
PML (NB) 1 2 3 4 5 6 7	1 1.000 0.952 0.522 0.950 0.961 0.958	2 0.952 1.000 0.520 0.972 0.941 0.953	3 0.522 0.520 1.000 0.516 0.518 0.519	4	5 0.950 0.972 0.516 1.000 0.924 0.927	6 0.961 0.941 0.518 0.924 1.000 0.985	7 0.958 0.953 0.519 0.927 0.985 1.000	8 0.974 0.962 0.523 0.958 0.982 0.977	9 0.947 0.985 0.519 0.958 0.954 0.964	10 0.864 0.962 0.493 0.921 0.891 0.912		12	13 0.972 0.982 0.524 0.978 0.963 0.969
PML (NB) 1 2 3 4 5 6 7 8	1 1.000 0.952 0.522 0.950 0.961 0.958 0.974	2 0.952 1.000 0.520 0.972 0.941 0.953 0.962	3 0.522 0.520 1.000 0.516 0.518 0.519 0.523	4	5 0.950 0.516 1.000 0.924 0.927 0.958	6 0.961 0.941 0.518 0.924 1.000 0.985 0.982	7 0.958 0.953 0.519 0.927 0.985 1.000 0.977	8 0.974 0.962 0.523 0.958 0.958 0.982 0.977 1.000	9 0.947 0.985 0.519 0.958 0.954 0.964 0.962	10 0.864 0.962 0.493 0.921 0.891 0.912 0.904		12	13 0.972 0.982 0.524 0.978 0.963 0.969 0.978
PML (NB) 1 2 3 4 5 6 7 8 9	1 1.000 0.952 0.522 0.950 0.950 0.961 0.958 0.974 0.947	2 0.952 1.000 0.520 0.972 0.941 0.953 0.962 0.985	3 0.522 0.520 1.000 0.516 0.518 0.519 0.523 0.519	4	5 0.950 0.972 0.516 1.000 0.924 0.927 0.958 0.958	6 0.961 0.941 0.518 0.924 1.000 0.985 0.982 0.954	7 0.958 0.953 0.519 0.927 0.927 0.985 1.000 0.977 0.964	8 0.974 0.962 0.523 0.958 0.982 0.977 1.000 0.962	9 0.947 0.985 0.519 0.958 0.954 0.964 0.962 1.000	10 0.864 0.962 0.493 0.921 0.921 0.891 0.912 0.904 0.953			13 0.972 0.982 0.524 0.978 0.963 0.969 0.978 0.977
PML (NB) 1 2 3 4 5 6 7 8 9 10	1 1.000 0.952 0.522 0.950 0.961 0.958 0.974 0.947 0.864	2 0.952 1.000 0.520 0.972 0.941 0.953 0.962 0.985 0.962	3 0.522 0.520 1.000 0.516 0.518 0.519 0.523 0.519 0.493	4	5 0.950 0.972 0.516 1.000 0.924 0.927 0.958 0.958 0.921	6 0.961 0.941 0.518 0.924 1.000 0.985 0.982 0.954 0.891	7 0.958 0.519 0.927 0.927 0.985 1.000 0.977 0.964 0.912	8 0.974 0.962 0.523 0.958 0.982 0.977 1.000 0.962 0.904	9 0.947 0.985 0.519 0.958 0.954 0.964 0.962 1.000 0.953	10 0.864 0.962 0.493 0.921 0.891 0.912 0.904 0.953 1.000			13 0.972 0.982 0.524 0.978 0.963 0.969 0.977
PML (NB) 1 2 3 4 5 6 7 8 9 10 11	1 1.000 0.952 0.522 0.950 0.961 0.958 0.974 0.947 0.864	2 0.952 1.000 0.520 0.972 0.941 0.953 0.962 0.985 0.962	3 0.522 0.520 1.000 0.516 0.518 0.519 0.523 0.519 0.493	4	5 0.950 0.972 0.516 1.000 0.924 0.927 0.958 0.958 0.921	6 0.961 0.941 0.518 0.924 1.000 0.985 0.982 0.954 0.891	7 0.958 0.953 0.519 0.927 0.985 1.000 0.977 0.964 0.912	8 0.974 0.962 0.523 0.958 0.982 0.977 1.000 0.962 0.904	9 0.947 0.985 0.519 0.958 0.954 0.964 0.962 1.000 0.953	10 0.864 0.962 0.493 0.921 0.891 0.912 0.904 0.953 1.000			13 0.972 0.982 0.524 0.978 0.963 0.969 0.977 0.930
PML (NB) 1 2 3 4 5 6 7 8 9 10 11 12	1 1.000 0.952 0.522 0.950 0.961 0.958 0.974 0.947 0.864	2 0.952 1.000 0.520 0.972 0.941 0.953 0.962 0.985 0.962	3 0.522 0.520 1.000 0.516 0.518 0.519 0.523 0.519 0.493	4	5 0.950 0.972 0.516 1.000 0.924 0.927 0.958 0.958 0.921	6 0.961 0.941 0.518 0.924 1.000 0.985 0.982 0.954 0.891	7 0.958 0.953 0.519 0.927 0.985 1.000 0.977 0.964 0.912	8 0.974 0.962 0.523 0.958 0.958 0.982 0.977 1.000 0.962 0.904	9 0.947 0.985 0.519 0.958 0.954 0.964 0.962 1.000 0.953	10 0.864 0.962 0.493 0.921 0.891 0.912 0.904 0.953 1.000			13 0.972 0.982 0.524 0.978 0.963 0.969 0.978 0.977 0.930

EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

RESULTS

(NB)	PMS /Ref
1	0.910595
2	0.907096
3	0.914725
4	
5	0.922014
6	0.913865
7	0.918648
8	0.912448
9	0.918137
10	0.90797
11	
12	
13	0.92564

(NB)	PML /Ref
1	0.855904
2	0.8479
3	0.808534
4	
5	0.858145
6	0.791292
7	0.796262
8	0.834348
9	0.84524
10	0.794618
11	
12	
13	0.86068

MULTIVARIATE LINEAR REGRESSION MODELS FOR CALIBRATION OF LOW-COST SENSORS FOR AIR-POLLUTION MONITORING

Model	Parameters	R^2	RMSE	AARE
MLRpms-	PMS, T, H, p			
1(NB)		0.922487	5.878108	3.981672
MLRpms-	PMS, T			
2(NB)		0.921241	5.923232	4.039527
MLRpms-	PMS, H			
3(NB)		0.921908	5.899118	4.039738
MLRpms-	PMS, p			
4(NB)		0.911240	6.271679	4.236747
MLRpml-1	PML, T, H, p			
(NB)		0.861990	10.3595	7.216037
MLRpml-2	PML, T			
(NB)		0.857081	10.52824	7.247795
MLRpml-3	PML, H			
(NB)		0.857213	10.52376	7.231833
MLRpml-4	PML, p			
(NB)		0.860658	10.40566	7.287425

MULTIVARIATE LINEAR REGRESSION MODELS FOR CALIBRATION OF LOW-COST SENSORS FOR AIR-POLLUTION MONITORING

- From the results it was evident that R² parameter that determines the degree of correlation between the output and target data has a higher value for the PMS group in comparison to the PML fraction
- Also, based on the values of statistical tests for different models it was concluded that the use of the maximum number of input parameters in the model gives the best results
- Differences in the results are not high and it was noted that humidity (pressure) has the greatest impact in the linear regression
- When one applying regression methods, for simplicity, it can also be used a model that contains only the humidity(pressure) as an input parameter